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Measurements of the thickness and the stability of thin films of liquid (1-150pm 
thick) formed on a rotating horizontal disk are presented and correlated in terms 
of an asymptotic-expansion solution of the thin-film equations. Water, various 
alcohols and water with wetting activities were used to cover a range of viscosity 
(1-2.5cP) and surface tension (20-72dynes/cm). Smooth flow was found to 
occur in a region defined by the flow rate, rotational speed and physical properties 
of the liquid. Outside this region various wave patterns were observed (concentric, 
spiral and irregular waves). A linear theory of the stability of the film based on 
an extension of classical stability theories for plane films on inclined planes is 
given and contrasted with the experimental results. Surface phenomena associ- 
ated with the use of wetting agents were found to have a strong effect on the 
stability of the film. 

1. Introduction 
Most of the theoretical and experimental research on the flow of a liquid in 

thin fdms deals with films formed under the action of gravity on stationary, 
inclined and vertical planes (e.g. Fulford 1964). Such films are of interest in con- 
nexion with the transfer of heat and the diffusion of mass across the liquid inter- 
face because a thin film presents a very large transfer surface for the volume of 

Very little information on films driven by centrifugal forces on rotating sur- 
faces is available. Centrifugal forces can be much larger than gravity. The film 
on rotating disks can thus be made thinner more rapidly and the size of the equip- 
ment for a given through-flow can be made smaller than in the case of a film 
developing on a stationary inclined plane. This makes it attractive for certain 
applications. A certain amount of research on rotating flms was done from the 
standpoint of the atomization of the liquid and is more concerned with how the 
film leaves the spinning surface than with the development of the flm itself. 
Dorfman (1967) published a numerical solution of the thin-film equations on a, 
spinning disk for the initial phases of its development. Espig & Hoyle (1965) 

through-flow . 
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provided experimental measurements of the maximum film thickness and 
discussed briefly the waves formed on the surface. Some preliminary design 
reports aimed at  various applications are available (water desalinization (Brom- 
ley 1965), oxygen transfer to blood (Aroesty et al. 1967; and others)). However, 
all this information is insufficient to predict the characteristics of a film of liquid 
with arbitrary physical properties (viscosity and surface tension) and the nature 
of the waves on the fm t surface of the film, which are important in determining 
the coefficients of heat and mass transfer across the interface. 

Some preliminary results of the present programme have already been pre- 
sented at scientific meetings. Aroesty et al. (1967) presented an asymptotic 
theory for the development of the film on a rotating disk. Measurements of the 
mean thickness of the film were discussed by Gazley & Charwat (1968). These 
experiments did not include variations in the properties of the liquid. The present 
paper summarizes the previous results and describes additional studies dealing 
with the stability of the surface of the film. Additional data are given in the report 
by Charwat et al. (1970). 

2. Experimental equipment 
The rotating disk (38 cm in diameter) is made of optical glass. Liquid is allowed 

to flow out of a nozzle located over the centre of rotation. The nozzle has a dia- 
meter of 0.55 ern and its height is adjusted so that the boundary of the free jet 
coming out of the nozzle turns smoothly to form the free surface of the film. 
A second configuration in which the liquid is admitted from below through the 
shaft was also used. The flow rate is measured by a bank of calibrated flow 
meters; the rotational speed of the disk is determined by an optical tachometer. 

Measurements of local film thickness are made by infra-red absorption. A light 
source is mounted on a movable arm above the disk, and either steady or modu- 
lated light can be used, resulting, respectively, in a direct or alternating electrical 
signal from the receiving photocell (mounted below the disk). The d.c. method 
gives some information on the shapes and amplitudes of the waves of the film; 
the a.c. method improves drift problems in mean-thickness measurements. The 
output of the photocell is amplified and recorded, using a voltage-to-frequency 
converter and pulse counter. This signal processing is necessary in order to obtain 
reproducible mean readings which average the large amplitude irregular waves 
which often cover &he film. The readings so obtained are a logarithmic average 
of the film thickness. Tests were made with an exponential amplifier incorporated 
in the apparatus but no significant correction was found within the scatter of the 
data. The equipment is calibrated directly using a calibration cell which consists 
of two glass plates (of thickness and quality equal to that of the experimental 
disk) with a wedge-shaped space of known geometry between them, filled with 
the test liquid. Film surface conditions were recorded photographically by an 
overhead camera triggered once eachrevolution by cams on the shaft. Also, high- 
speed film sequences were made. A parallel-beam lighting system illuminates 
the disk. 

Prior to each test the disk was washed with soap, ether and acetone and rinsed 
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with distilled water. The test fluid was stored in a closed head tank and exposed 
to the normal atmosphere in the laboratory only while on the disk. 

Typical ranges of operation of the equipment are as follows. Measurements 
can be made at  radii larger than 2.5 om, which is the radius of the central nozzle 
assembly. The maximum flow rate is 13 c.c./s; below 0-3  c.c./s the source nozzle 
tends not to flow full. Rotational speeds are between 1 and 18 rev/s; the direction 
of rotation is clockwise looking from above (as on the photographs shown in this 
paper). The Reynolds number, based on the thickness of the film and the surface 
velocity, varies from a maximum of about 200 (near the axis) to about 1. In  this 
range we never observed any evidence of microturbulence (such as turbulent 
'spots'). The fdm thickness varies from about 150pm to approximately lpm. 
The range of radial velocities at  the surface of the film is 1-150 cm/s. 

3. Mean characteristics of the film 
When the flow is laminar and the film sufficiently thin (large values of the 

radius), the film flow is quasi-parallel and the film's ciroumferential velocity 
component v is approximately equal to wr, where w is the angular velocity. The 
radial flow in the film is then described (see Aroesty et al. 1967) by the following 
inertia-free balancet between the local shear and centrifugal forces : 

vdZuldz2 = - w2r. (3.1) 

This equation is integrated subject to the no-slip condition at  the disk surface 
and the matching of the surface velocity and shear stress at the interface between 
theliquid film and the ambient air (u = u8 and T = r8 at z = 6, see equation (3.5)). 
We shall first present results based upon the assumption that the interfacial 
shear is negligible ( T ~  = 0); these provide a convenient framework for correlating 
data. The effect of the air boundary layer over the film will be discussed subse- 
quently. 

The radial velocity distribution across the film is found to be parabolic: 

The maximum radial velocity occurs at  the free surface and is 

where Q is the volumetric flow rate, and the average over the fdm is 

u = $us. (3.4) 
The tangential velocity in inertial co-ordinates is constant throughout the fdm; 
that is, the circumferential velocity in co-ordinates rotating with the disk 
is zero (to lowest order). The thickness of the film is 

Valid for low values of the Rossby number Z/w .  
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and the pressure in the film is hydrostatic. This far-field solution does not depend 
on the surface tension. Indeed, from (3.5) it can be seen that the curvature of 
the surface (d26/dr2) vanishes like r-s. This solution contains a characteristic 
length 

and can be expressed as a function of the dimensionless variables 

Professor J. D. Cole has shown that the above far-field solution is the first term 
of an asymptotic expansion in r* = r/l  of a solution of the full Navier-Stokes 
equations. Higher order terms of the series are worked out in detail in another 
paper (Rauscher et al. 1972), where the velocity distribution across the film is 
given in terms of lengthy polynomials in 5. These distributions are virtually 
unmeasurable and, for this reason, only the simpler expressions evaluated at 
the surface ([ = 1) are given here. 

us/wZ = +r*-B+ ( - 0 ~ 1 1 1 + 0 ~ 2 3 2 g ~ / & w 2 ) r * - 3 + 0 ( r * - ~ ) .  (3.8) 
(vs - ur)/wZ = - 0-41 7 r*-8 + ( - 0.1 28 + 0.1 99gv/&u2) r*-y  + O(r*-5) (3.9) 

ws/(wv)* = -Jg*-2+( - 0 ~ 1 8 8 + 0 . 4 6 6 g v / & w 2 ) r * ~ + O ( r * ~ ) ,  (3.10) 

S/(v/w)* = r*-#+ (0.197 - 0465gv/&w2)r**+O(r*4). (3.11) 

One can see from (3.8) and (3.9) that the departure of the azimuthal velocity 
aomponent from solid-body rotation is of O(r*-*) relative to the leading term of 
the radial flow. This is proportional to the inverse of the Ekman number E 
(E-1 N wS2/v) and arises from the Coriolis acceleration. It is now clear that the 
secondIterm in'each expansion is of O(E-2) relative to the leading term, except for 
the factor involving gravity. This factor can easily be shown to be proportional 
t o  the square of an inverse Froude number (gS/;ii2) when the leading terms in 6 and 
ti are used in the definition. The second terms in the expansions arise from the 
advective and Coriolis terms in the equations of motion and also from the fact 
that the free-surfaoe stress conditions are applied at  a curved surface. The latter 
effect would also lead at O(r*-$) to a pressure term which is dependent upon sur- 
face tension. One can also show that the vertical velocity is O(ERo)-l relative to 
the leading term of the radial velocity, where Ro is the Rossby number (Z/wS), 
which is a measure of the importance of advection to Coriolis acceleration. 
The solution carries no information on the outflow from the source other than 
the magnitude of the flow rate. 

A comparison of (3.5) and (3.1 1) shows that the thickness of the film is virtually 
unaffected by the second term in the range of the present tests (r* 1). Con- 
versely, the angle of the flow relative to the radius (in co-ordinates rotating with 
the disk) is a sensitive measure of the degree of approach to the far-field flow. 
Figures 1 (a)-(c) show experimental data compared with the leading terms of (3.8) 
and (3.9). Measurements were obtained as follows. A thin needle was mounted 
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FIGURE 1. Angle of flow at  the SLU'f~C0 of the film, V* = 1.0 (Y* = ratio of kinematic vis- 
cosity to  that of distilled water). (a) w' = 4 revls; 0, Q = 3.33 c.c./s; 0, Q = 1.67 c.c./s; 
r* = 0-85 (g* = ratio of surface tension coefficient t o  that of distilled water). ( 6 )  0, 
w' = 4revls; A, d = 8 revls; Q = 3.33C.c.l~; U* = 0.85. ( c )  d = 4revls; Q = 3 - 3 3 ~ 4 s ;  
0, 6* = 0.85; 0, C* = 1.0. 

above the disk on a bar rotating with it and lowered until it just pierced the sur- 
face of the film. The disturbance caused a wake, which was photographed. The 
angle of the line of symmetry of this wake evaluated immediately downstream 
of the disturbance is the angle of the surface streamline (in rotating co-ordinates). 
The data is uncertain only to the extent that the needle penetrates the film, 
across which the flow direction changes, an effect which we believe to  be negligible. 
Additional evidence that the flow relative to the disk is not radial is found in pic- 
tures of the shape of dry spots, which are discussed later in this paper. 
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FIUURE 2. Comparison with Dorfman's results. v* = 1.0, u* = 1.0; .- , two-term 
asymptotic theory; 0, experimental data. 
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The region close to the origin must be influenced by the source. An estimate 
of the extent of this influence can be made by comparing our data with the 
results of Dorfman's numerical calculations (Dorfman 1967). This is shown in 
figure 2. In the present experiments the liquid flowed out of a stationary nozzle 
with out pre-rotation. Dorfman began his integration from an arbitrary, fully 
pre-rotated profile near the origin. In  any case, it appears that the influence 
of the source decays when r* = r/l is of order unity. 

Figure 3 shows typical measurements of the radial distribution of the mean 
(time-averaged) fdm thickness. Both figures 3 (a) and 3 (b )  show the data corre- 
lated in terms of parameters derived from the lowest order asymptotic solution. 
Figure 3 (b )  gives data for water with enough surface-tension reducing agent to 
eliminate surface waves (the stability of the surface will be discussed below). 
Figure 3 (a)  contains measurements made in distilled water and a water-glycerine 
mixture to change the viscosity. The film surface was mostly covered by waves, 
hence the larger scatter of the data. Different source positions are included to 
show the absence of their influence. 

It is clear that the grouping of parameters suggested by the asymptotic theory 
correlates the measurements well with respect to independent variations in the 
properties of the fluid and the flow. The two-term asymptotic solution gives the 
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FIGURE 3. Correlation of film-thickness measurements. 0, 15 revls; 0, 12; 0, 9;  a, 6 ;  
b, 4; n ,2;  A ,  1.5. Flags giving flowrates in c.c./s: none, 0.20; 0,0 .41;  Q, 1.28; 0 , 3 . 7 1 ;  
6, 6.93. (a) Water and water-glycerine (u* = 1, 1 < v* d 2.6). ( b )  Water with wetting 
agent (v* = 1, 1 < v* < 0.7). 

direction of the flow remarkably well; this should be a sensitive check on the 
agreement between theory and data. Nonetheless, measured film thicknesses 
are systematically lower than those predicted by this analysis. Espig & Hoyle 
(1965) measured a maximum film thickness, that is, the thickness beneath the 
crests of the waves which were always present under the conditions of their ex- 
periments, and found it to be about 40 % larger than the value given by equation 
(3.5). If the estimated height of the waves is taken into account, these measure- 
ments suggest a mean thickness within 10 yo of the theory. The present measure- 
ments obey the empirical correlation 

Sir = 1.6(Qv/~~r5)~.4 (3.12) 

and cover the range 10-12 < Qv/u2r6 < 10-7, 1.7 < r/E < 20. In  mid-range, they 
indicate a film with one-half the thickness predicted by (3.5). 
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The deviation of the measured film thicknesses from those predicted, especially 
for the larger value of radius at which the asymptotic solution should hold, 
suggests that the shear stress exerted by the induced air flow might be important. 
In  order to assess this, we can assume that the previous results represent the 
lowest order solution in an expansion involving the ratio of the viscosity of air 
to that of the liquid (,u,/fi). With the surface velocities prescribed (equations 
(3.8) and (3.9)), the air flow can, in principle, be calculated; the shear stress ex- 
erted on the liquid would then be known. In  order to obtain an estimate it is 
convenient to assume that the surface velocities relative to the disk are small 
enough for the classical solution for the flow induced by a rotating disk (Sohlich- 
ting 1960, p. 83) to be applied. Using that solution, the maximum value of the 
radial component of the air flow M 0.181wr, and the resulting estimate for the 
shear stress should be good if 

u,,,,/u~ = 0 - 3 6 2 ( ~ , / ~ & ~ )  = 0 .3623  $ 1, (3.13) 

where E is the Ekman number, which varies as (r/Z)* on the basis of the previous 
solution. For EM 30 the estimate should be good. Although this corresponds to 
very thin films, the estimate should, at  any rate, be conservative because the 
interfacial stress will be less for smaller values of E. Assuming that (3.13) is satis- 

fied' we can say that T~ = pL,(0.510rw) (w/v,)g (3.14) 

and use this as a boundary condition in solving (3.1). We then find that 

(3.15) 

and, from the volumetric flux condition, 

This indicates that the film thickness will be decreased owing to the induced air 
flow. However, even for (r/Z) N 55 the correction is only about 1-5%, so that, 
although consideration of the induced air flow gives the correct qualitative be- 
haviour, the discrepancy between experiment and the free-surface solution 
cannot be explained on this basis. We might also note that for low values of E 
(3.13) suggests that the air flow might tend to decrease the film velocity, which 
would then tend to thicken the film relative to the free-surface solution. Using 
the result (3.16) in (3.15), we h d  that 

(3.17) 

so that the correction to the radial component of the surface velocity is again 
typically small. However, if we again use the classical solution in order to com- 
pute the effect of the air flow upon the azimuthal velocity, then we find (cf. 
equation (3.9)) that 

-- v8 - wr [ (2) (-!-) v 3 ( ~ ~ * 2 - 1 1 . 0 2 0 r * ~ ) + 0 ( ~ ) 2 ] ,  0-616 (3.18) - - 0.417~*-8 1 + - 
W l  
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where the first term in parentheses represents the effect of the induced stress 
and the second represents the change in S. It is clear that the effect of the air upon 
the azimuthal flow is more important than the effect upon the radial flow for 
large r*. Por r* z 4 the correction to the azimuthal flow is about lo%, whereas 
the correction t o  the radial flow is insignificant. This might explain the tendency 
for the data in figure 1 to fall somewhat below the predicted curve. 

4. Characteristics of surface waves 
Figure 4 (a )  (plate 1) shows completely steady flow over the entire disk. Figure 

4 ( b )  (plate 1)  shows the existence of a train of concentric waves near the centre 
of the disk. These waves move outward and decay, and the outer part of the film 
is smooth. Figure 4 (c) (plate 1) shows a pattern of spiral waves. These waves seem 
to be fixed to the rotating disk (they are stationary in the rotating oo-ordinate 
system) and unwind in the direction of rotation. They tend to decay at  large radii 
but, in most cases, they first break up into a very rough and non-uniform pattern 
of disconnected wedge-like wavelets (figure 4 ( d )  (plate 1) c.f. Tailby & Portalski 
1962, figure 9). 

The occurrence of waves of either type depends on the magnitude of all four 
experimental variables: the flow rate &, the rotational speed w, the surface ten- 
sion of the fluid CT and the fluid viscosity v. Figure 5 is a plot of the stability bound- 
aries of both families of waves. To the left of the limit curve labelled ‘concentric 
waves’ such waves are seen? always near the centre of the disk. To the right of a 
curve labelled ‘spiral waves’, depending on the value of B,  spiral waves are seen, 
always starting at some radius away from the centre. Between the ‘concentric ’ 
and ‘spiral ’-wave limit curves the film is completely smooth. In  regions above the 
point of intersection of these curves (for given v and v) both types of waves are 
present, so that their nature is no longer clear. 

Figure 6 (plate 2) shows oscilloscope traces$ of the output of the film-thickness 
measuring photocell in the regime of concentric waves, spiral waves and also, 
for comparison, across a ‘dry spot’. There is clearly a substantial difference in 
the character of the two families of waves: the concentric waves form a sinusoidal 
train of small amplitude disturbances, while the spiral waves are large and 
exhibit sharp peaks and shallow troughs. This data is qualitative because the 
logarithmic response of the instrument depresses the wave peaks (large local 
film thickness) relative to the troughs. Also, the instrument cuts the waves along 
a constant radius. The period of the spiral wave traces is a projection of their 
wavelength on a plane at  the local angle of the spiral (stationary waves). The 
period of the concentric wave traces is related to their wave speed. 

In  order to provide a framework for the discussion of the data an attempt was 
made to extend the linear stability theory for thin planar films to  the present 
case (Rauscher 1969). It is shown that the stability equation (Orr-Sommerfeld 

t Since the nozzle assembly obscured the centre, this line represents conditions where 
no concentric waves are visible beyond r = 2 om. 

$ For these tests the light souroe was operated on continuous current and the photocell 
output was a.c. coupled to the oscilloscope. The electronic signal amplification was the 
same in all cases. 
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FIGURE 5. Boundaries of concentric and spiral waves. 
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TABLE 1. Scaling parameters 

equation) and the associated boundary conditions for a two-dimensional dis- 
turbance to the planar film-t and for an axisymmetric disturbance to the spinning 
film are identical to order r*--*. These results are obtained by expanding about a 
local position so that, at any point on the rotating disk, the stability of the film 
corresponds to that on a plane having an inclination E = cot-l (g/u2r) to the hori- 
zontal (Binnie 1957). To this order the effect of Coriolis forces on both the dis- 
turbance and the mean flow are neglected. These forces, which act in the plane of 
the disk, must be associated with the appearance of oblique (spiral) waves. In 

f Rauscher compares the rotating disk to the planar film on vertical planes and finds 
these problems to be equivalent when a term involving gravity is small. This term transforms 
exactly into the term representing the influence of inclination of the plane to the hori- 
zontal. 
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order to discuss this phenomenon the stability of a simplified pseudo two-dimen- 
sional model of the rotating film is described later in this paper. This analysis pro- 
vides a guide for the following discussion of the measurements, but it is essential 
to bear in mind certain fundamental shortcomings of the theoretical model. The 
analysis is formally valid only at large radii (large values of r*, i.e. large Ekman 
numbers) and small amplitude waves. Furthermore, expansions about a 2oca2 
position neglect the radial variation of the flow properties and their effect on 
the history of the disturbance. The observed waves have large amplitude and 
therefore have a history. Table 1 summarizes the dimensionless scaling parameters 
which govern the flow and gives them in terms of variables measured in the 
laboratory. It can be seen that, unlike plane film flow, for which these parameters 
remain constant in space, the Reynolds number decreases with radius while 
the Weber and Ekman numbers increase with it. The Froude number is not a 
function of radius. For instance, the assumption made usually, that the charac- 
teristics of the observed waves are those of the locally most highly amplified 
small disturbances, is less justifiable than in the case of plane films, and nonlinear 
effects, such as the ‘locking in’ of waves once they become large, may be im- 
portant. 

4.1, Characteristics of the concentric waves 
The concentric waves originate at the nozzle and decay with radius. We believe 
that the waves are generated by the nozzle outflow, possibly owing to the highly 
curved free surface of the jet as it turns out to spread out on the disk. They should 
not be identified with the two-dimensional waves observed on an inclined plane, 
which find their true counterpart as a limiting case of the spiral waves for very 
large Ekman numbers. The axial symmetry of the waves is imposed in this case 
by the axial symmetry of the source and only in part by the stability properties 
of the film. 

The wavenumber of the concentric waves, based on conditions a short distance 
ahead of the radius at which they cease to be visible, is plotted on figure 7 .  It is 
not possible to ascertain accurately whether the wavelength of the wave train is 
constant or whether it varies as IS varies over the range of radii where they are 
visible, The wave speed, which can be estimated from oscillosoope records such 
as those shown in figure 6, is about twice the surface speed (ranging between 1.7 
and 2 . 8 ~ ~ ) .  The wave speed and the wavenumber of the concentric waves is 
quite close to those of the most highly amplified long waves according to linear 
theory for planar films on avertical wall (Benjamin 1957); figure 7 also shows these 
wavenumbers for comparison. 

Small disturbance theory for axisymmetric waves predicts that the film should 
be unstable in this range of wavenumbers and Weber and Froude numbers. The 
fact that the observed concentric waves decay might seem to be surprising. The 
theoretical model discussed below shows that the Coriolis force has no effect 
upon axisymmetric disturbances. However, this conclusion is only valid for the 
large E for which the theory is valid, i.e. large radii with fixed flow conditions. 
For large E the lowest order azimuthal disturbance velocity only exists because 
of the mean azimuthal shear, which becomes of O(E-1) for an axisymmetric 
disturbance. Hence, the Coriolis effect upon the axisymmetric disturbance owing 
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FIGURE 7. The wavenumber of conoentric waves. 0, v* = 1, u* = 0.83; 
0, V* = 1.0, U* = 0.96; A, V* = 2.6, U* = 0.85. 
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FIGURE 8. Example of the radius of dway of concentric waves in distilled water. 
0, Q = 12.0 o.o./s; 0, Q = 8.33 c.c./s; A, Q = 5.00 c.c./s. 

to the perturbed azimuthal flow becomes less important. In  the region of decay 
of the concentric waves the Ekman number varies between 0.5 and 2.5. For 
E of order unity the disturbance equations are coupled and the azimuthal 
disturbance velocity is of the same order as the radial disturbance velocity, and 
so the Coriolis force can have a stronger influence. Because the concentric waves 
exist under conditions for which they would seem likely to extract energy from 
the mean radial flow (again, on the basis of the large E analysis), we suggest thak 
the Coriolis force might have a stabilizing influence upon these (imposed) con- 
centric waves. With this in mind, we note that the asymptotio analysis does 
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predict that the growth rate of an oblique wave is less when the direct effect 
of the Coriolis force upon the disturbance is included than when only its indirect 
effect in creating a non-unidirectional mean flow is considered. 

Figure 8 shows an example of the variations in the radius at which the concen- 
tric wave train disappears. The initial magnitude of the waves (which we suppose 
to be dependent on the configuration of the outflow from the nozzle) seems to 
increase with the flow rate (for fixed geometry of the nozzle) and with decreasing 
surface tension; this seems reasonable. The rate of decay of the waves increases 
with rotational speed and decreases with flow rate (which indicates that it in- 
creases with decreasing film thickness). 

4.2. Characteristics of the spiral waves 
Figure 9 shows measurements of the spiral angle plotted against the Ekman 
number and compared with the angle of the most unstable wave as predicted by 
the analysis gfven in the following section. The correlation is quite good. Changes 
in the surface tension of the liquid (the Weber number) and surface-tension- 
reducing activities do not seem to affect this angle. This too is verified by the 
analysis. The spiral angles are negative, corresponding to a spiral which un- 
winds in the direction of rotation. Observations suggest that the spiral is station- 
ary in a frame rotating with the disk but we were unable to determine this with 
certainty. High-speed photography at 3000 frames per second was used to follow 
the radial location of a wave crest in intervals of a few degrees. The stability 
analysis indicates, on the other hand, that the wave speed of these waves (negative 
p) is finite and increases somewhat with their obliqueness. 

The wavenumber of the spiral waves appears to be nearly constant (figure 10). 
The Reynolds number is used as the ordinate only as a means of displaying the 
data. The wavelength on which this wavenumber is based refers to the radial 
spacing between successive waves in a wave packet and is not to be confused with 
the radial distance separating successive passes of the same spiral through a fixed 
circumferential station. When the flow conditions are near the stability limit, 
we can often see a single spiral or packets of two or three waves spiralling around 
the disk with smooth flow between the passes. In  these cases the waves are well 
defined and often decay without breaking up into disconnected three-dimensional 
wavelets. Such a breakup occurs when the film is more unstable and ‘full’ of 
waves. It may be due, in part, to a geometric interference between the waves, 
but, noting that this breakup of waves is also observed in plane flow, it is more 
likely to be due to the (nonlinear) instability of the wave itself. The ‘random’ 
wavelets also decay with radius; we could not determine their motion relative to 
the disk. 

The radius at which the spiral waves originate and the approximate radius at 
which all waves cease to be visible is shown on figure 11 for water and a water- 
glycerine mixture. The minimum value of the product Qw on figure 11 (empiri- 
cally, the dominant simple combination of parameters) below which no spiral 
waves are seen at any radius corresponds to  the curve displayed on figure 5. 
The origin of the waves can be determined fairly accurately; the radius of their 
decay is more unoertain because in the majority of cases the waves ‘break up’ 
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Inverse Ekman number, E-1 
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Equation (5.41)’ L 
FIUURE 9. The angle of the spird waves, - /3 = tan-l [( l / r )  (dr/d@]. 

A 0 4 
V* 1 1 1 1.7 2.6 2.6 
U* 0.83 0.96 1.0 0.98 0.97 0.85 

1 1 I 1 I 1 I I ]  
0 10 20 30 

Reynolds number, Re 

FIUUFCE 10. Wavenumber of spiral waves. A, v* = 2.6, U* = 0.85. For U* = 1, v* = 1 : 0, 
w‘ = 4 rev/% r = 7-62 em; (>, w’ = 6 rev/s, r = 7.62 em; 0, a‘ = 9 rev/s, r = 4.73 em; 
a, w’ = 1.2 rev/s, r = 4.73 om. 

first and the disappearance of the random wavelets is difficult to specify. The 
general aspect of the spiral-wave boundaries and their variation with Q and w is 
the same for all liquids tested (water; water-glycerine mixture; propyl, ethyl 
and methyl alcohok). 

Because the stability analysis of the following section is restricted to large 
values of E (i.e. large radii), it is not suited for predicting the radius at which the 
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Qo (c.c./s*) 
FIGURE 11. Domain of spiral waves. A, Y* = 1.0, u* = 0.96; A, v* = 2.6, g* = 0.97. 
Flags: none, w’ = 4 revla; 9, w’ = 6 rev/s; 0, w’ = 8 revls; 0, w’ = 9 rev/s; &w’ = 10 
rev/s; (>, 0’ = 12 rev/s; 6, w’ = 14 rev/s; 6, o‘ = 16 rev/s. 

spiral waves appear. On the other hand, it is felt that the analysis should give a 
reasonable description of the amplification rate of the waves while they travel 
through a substantial part of the unstable region. Hence it can be employed to 
parametrize the total amplification of a wave, which is a measure of whether or 
not a wave is observed. 

The amplification of a wave is 

where -ai is the local non-dimensional spatial amplification rate, r, is a length 
scale characteristic of the unstable region and Go = Z(ro). The lower limit of the 
integral is not specified. Now it is known that for low amplifkation - ai z (acz/cq), 
where (ac){ is the temporal growth rate and cg is the group velocity, which is 
approximately equal to the phase velocity in the present case. Using the result 
for the growth rate (equation (5.40)), we have 

1. (44 
- a2 6 cos2,8- b(a2We + l/F2) - (2*571/E) sin 2,8 

Re [- 3 C O S P -  (4/E) sin/3 
For a wave with fixed a, corresponding to those observed, - a$ will approach zero 
as r increases, because both We and E increase. Now tan p behaves like E-l for 
large E (cf. (5.41) and figure 9), so the terms involving sin PIE are of O(E-2). Be- 
cause the flow will be stabilized when We is sufficiently large, it is natural to 
choose ro on the basis that a2 We N O( 1)  or, for fixed a, 

16 
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Once this is specified, we can express Eh2 in terms of r, : 
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where 

and state that - 

(4.5) 

For a film with fixed surface properties, the importance of the value of wQ is thus 
evident from the definition of A. The remaining parameter defining the total 
amplification is 

V (4.7) 

so that the h a 1  parameter could be Q20/VS. However, the parameters can be 
combined to yield the set 

which has the advantage that the h a 1  parameter in parentheses is only a func- 
tion of the properties of the film. 

The conditions under which spiral waves are no longer visible are displayed 
in terms of these parameters in figure 12. For given film properties, the data fall 
approximately on a straight line having a slope near unity in the plane of 

F-2 - rx2Q-l and o, 

which suggests the rough correlation of the stability limit with the product Qw, 
as in figure 11. 

Figure 12 includes data for pure water which exhibit considerable scatter. 
This is because at these values of the physical constants the critical w and Q 
are very low, at the lower limit of accurate operation of the equipment, and the 
very thin film tends to form dry spots. We have indicated the line corresponding 
to water ( d / p * v &  = 450) by a broken line. 

Tests were also performed with the addition of a surface-wetting agent (Kodak 
Photo-Flo) to water and to a water-glycerine mixture (with viscosity 2.6 times 
that of water). The object was to prevent film breakup for very thin films. By 
decreasing the surface tension, one would expect that the film would become 
more unstable. Instead, a pronounced stabilization of the film occurred. In fact, 
no waves were observed when the following empirical correlation was satisfied: 

I/Qw = r(a-bplo,) ,  a = 2 - 9 0 ~ ~ c m - ~ ,  b = 1 - 6 5 d y n ~ ~ c m - ~ ,  (4.9) 

where a, is the ‘apparent’ surface tension of the mixture as measured by the 
capillary-rise method. This equation shows that when the apparent surface 
tension is reduced below about 57 dyn cm-l the film becomes absolutely stable; 
no waves of any kind could be observed throughout the entire range of flow rates 
apd rotational speeds of which the equipment was capable. It is felt that the 
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FIGURE 12. Correlation of absolute stability limits for spiral waves in water 
and methyl, ethyl and iso-propyl aloohol (and their mixtures). 

surface-wetting additive gave rise to phenomena associated with surface-active 
agents, e.g. surface elasticity and surface viscosity. For planar films, both 
Benjamin (1964) and Whitaker (1964) have shown that surface elasticity can be 
strongly stabilizing. This is true especially for long waves; Benjamin demon- 
strated that the stabilizing effect of surface elasticity is independent of wave- 
number (unlike the effect of surface tension). 

Figure 13 shows measurements of the amplitude of spiral waves. These 
measurements are rather inaccurate but they do show unequivocally that the 
waves grow to a maximum and then decay. The maximum amplitude of the waves 
is large, 30-50 yo of the local film thickness. The maximum is reached relatively 
near the beginning of the wave regime but the accuracy of the data is not sufficient 
to locate it exactly. Figure 13 (b)  shows the amplitude of the waves at r = 2-5 in., 
which is approximately the location of the maximum for the range of flow rates 
and rotational speeds tested with distilled water. Amplitude data for reduced 
surface tension were not taken, but the waves are then visibly smaller. 

I 6-2 
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3'5 t 
0 1 .o 2.0 3.0 4.0 

Amplitude x lo3 (om) 

El 
d 4 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Wave amplitude x lo3 (cm) 

FIGURE 13. Spiral-wave amplitude (distilled water: V* = v* = 1). (a) Wave amplitude 
218. radius at selected flow conditions. 0, Q = 10 c.c./s; 0, Q = 6.67 c.c./s; A, Q = 5.0 
c.c./s, w' = I0 rev/s. (a) Wave amplitude V8. film thiclmess at constant radius. Distance 
A-0 shows scatter. 0, Q = 10 c.c./s; A, Q = 5 c.c./s; radius = 6.35 om. Flags: 
0, w' = 4 rev/s; d, w' = 6 rev/s; b, w' = 8 rev/s; none, o' = I0 rev/s. 

5. Analytical model of the stability of a rotating film 
The purpose of this study is to investigate, as simply as possible, how rotation 

might lead to the formation of spiral waves. It is assumed that the Ekman 
number E is large enough for the asymptotic solution given earlier to be meaning- 
ful and for terms of O(E-2) to be neglected. This allows us to construct a parallel- 
flow model which yields the inclined plane stability results as E + 00. We seek to 
evaluate the effects of terms of O(E-l), which reflect the importance of the Coriolis 
force. Because we essentially expand about the result for the inclined plane, for 
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Free surface x Disk 

c/" 
FIGURE 14. Sketch of the co-ordinate system. 

which the wave velocity of the most unstable wave is always greater than the 
maximum flow velocity, we cannot hope to predict the observed spiral waves, 
which appear to be stationary relative to the disk. Nonetheless, the model does 
indicate that spiral waves can be expected and serves as a useful vehicle for the 
discussion of the stability problem. 

As shown in figure 14, we consider the motion of a layer of viscous fluid of 
(constant) depth 6 which has a free surface and is bounded below by a wall, and 
which is acted upon by a constant body force pB in the x direction. The whole 
system is rotating with angular velocity w about the vertical axis, and we consider 
the motion relative to the rotating frame of reference (positive z is measured 
downwards from the free surface, so positive w corresponds to a rotation in the 
clockwise direction, as viewed from above). The equations which govern the 
assumed parallel mean flow are 

- 2wv = Y d2uldz2 f B (5.1 a)  

and 2wu = Yd2V/d22. ( 5 . l b )  

Defining an Ekman number as E = ( ~ 1 ~ 6 ~ )  and further defining 

where uc is a characteristic velocity, the equations become 

( 5 . 3 a )  

and 2 u = d2VIdC2, (5 .3b )  

which are to be solved subject to the conditions of zero slip at the wall and 
zero shear stress at  the free surface. The model can be viewed as being appropriate 
t o  a situation in which the body force is large in comparison to the centrifugal 
force. However, in order to relate our results to the rotating-disk results, we have 
to identify B with the centrifugal force, so B N O(w2x) .  By including the body 
force only in the x momentum equation, we are essentially identifying u with the 
radial flow and v with the azimuthal flow relative to the disk, at least on a local 
basis. The parallel-flow model is meaningful only for E 9 1. In  this limit, a flow 
is produced which is predominantly in the direction of the body force. In  contrast 
to Ekman layer flows and the flow induced by a rotating disk in an unbounded 
fluid, such a quasi-unidirectional model would appear to be appropriate to at 
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least some of the data obtained with the rotating disk (cf. figure l), although only 
in regions far from the origin of the flow. If we ignore terms of O ( P 2 ) ,  then the 
flow components with the present model are identical to the corresponding com- 
ponents in the asymptotic solution for the disk flow. We shall ignore such terms 
(which reflect the three-dimensional nature of the flow in the disk solution) and 
take our description of the mean flow as 

U = (B~?~/2ii ,  V )  (1 - 5 2 )  ( 5 . 4 ~ )  

v = (BS2/UC v) ( - & + $6 - &[4). (5.4b) and 

We now identify u, with an average velocity in the x direction by stipulating 

so that u, = U = S2B/3v. 
The stability problem can be easily formulated in our Cartesian system. We 

make all lengths non-dimensional on the basis of 6 and time on the basis of U and 
6. We let 

where (A) denotes a perturbation quantity dependent on x, y, 5, and t, and e -g 1. 
We write the non-dimensional pressure as 

u = Z(U+&),  v = S(E-lV+eO), w = €Ed, (5.6) 

PIPE2 = (1/m P(f3 + 4 (5.7) 

where P(5) is the hydrostatic distribution (dP/dc = 1) and F2 is the square of the 
inverse of the Froude number. If we introduce a Reynolds number, the continuity 
and momentum equations for the O(e) term become 

(5.8a) 

(5.8d) 

We now model the spiral wave by looking for a solution periodic in some 
directionx", say, which is inclined at  an angle /3, positive in the clockwise direction 
from above, to the x axis. Hence, we let 

x* = xcos/+ysinp ( 5 . 9 ~ )  

and y* = -xsinp+ ycosp, (5 .9b)  

so that y* is normal to x*. If we transform (a, 0)  to (a*, 8") similarly and stipulate 
that ali?y* = 0, the continuity equation becomes simply 

a&* aa @+ay= 0, (5.10 a) 
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whereas the momentum equations can be suitably combined to give 

and 

where 

and 

u* = Ucos/3+E-lVsin/3 

P* = - UsinP+E-1 Vcosp 
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(5.10 b )  

(5 .10~)  

(5 .10d)  

(5.10e) 

(5.10f) 

are the mean velocity components in the x* and y* directions, respectively. We 
can now define a stream function from (5 .10~)  by 

G* = a@la[, 8 = -a$lax*, (5.11) 

and take a perturbation of the form 

$ = $([) eia(x*-&) $* = e({) eiab**t), (5.12a, b)  

and p = m ( g )  eia(s*-ct). ( 5 . 1 2 ~ )  

Upon substitution and elimination of the pressure from (5.10b) and (5.1Od), 
we obtain 

while (5.10 G) yields 

(5.14) 

where a prime denotes d/dg. As the Rossby number ( E  Re) tends to infinity (5.13) 
becomes the Orr-Sommerfeld equation, whose solution could then be used to 
determine O(g) from (5.14). In  general, the equations are coupled. 

In  order to obtain a solution we take advantage of the fact that the experi- 
mentally observed wavenumbers are small, and expand in terms of a in a manner 
identical to that used by Yih (1963) for the inclined-plane flow (also Yih 1965, 
pp. 180-189). Actually, such an expansion also requires that a Re be small, and, 
from figure 9, we see that the condition is met only at the larger values of the 
radius for a fixed flow rate. However, from the inclined-plane analysis we might 
expect the qualitative trends to  be significant. We then assume that E is large 
and also expand in inverse powers of E. Hence, we expand q5,B and G in double 
expansions of the form 

4 = 'c. aiE-j$,, (5.15) 

but carry the details through only for i = j = 1. With reference to (5 . lOe , f ) ,  we 
also write 

U* = U,*+E-lU;+ ..., V* = V,*+E-' V;T+ ..., (5.16) 

6, j = O  
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where the definitions of the U?, Vj .  are obvious. The following equations ere then 
obtained. 

O(aoEo): 9'0; = 0,6& = 0. (5.17a, b)  

O(a0E-1): = - so;,, 6& = 2$i0. (5.18 a, b)  

( 5 . 1 9 ~ )  

(5.19 b )  

O(alEo): q5:: = iRe[( U$ -coo) $& - U,*"$,,], 

t9io = iRe[(U,* -c00)600- V,*'$,,]. 
O(alE-l): $:? = iRe[( U$ -coo) $il - U$"$ol 

+(U~-Col)$;;O- U:"$OJ-26';0, (5 .20a)  

e';, = iRe[(U,*-coo)~ol- V,*'$ol+ ( U : - ~ ~ ~ ) q 5 ~ ~ -  VZ'$oo]+2$;o. (5.2ob) 
The above equations are to be solved subject to the condition of no slip at the 
wall, i.e. 

+ij(i) = $;j(i) = eij(i) = 0, (5 .21)  

and also subject to the free-surface stress conditions, which will now be formu- 
lated. We need to know the wave-induced displacement, e&$ say, of the free 
surface, which is determined by 

;+ U*(O)- a@ = @(x*, 0 , t )  
i?XM 

or, if we let @ = 7 exp {ia(x* - ct)] ,  

7 = - - $ ( O W * ( O ) - 4 .  
The shear stress must vanish at the free surface, so 

av* au* aw 
ag ag ax 
_ -  --+-=(I at 5=6 .  

Expanding about the mean level, we obtain 

and 

( 5.22 a) 

(5 .22b)  

(5.23) 

(5 .24)  

(5.25) 

to be applied now at 6 = 0. Using (5.223) and (5.15), we obtain from (5 .24)  

(5.2 4 a)  

( 5 . 2 4 ~ )  
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whereas, from (5.25) we have 
d2900 d2U$ (U,* - coo)= d(S2 9 0 0  = 07 

* d2q500 d2U,* d2U: 

d291o w o o  d2U$ 
a5 

901 - 900 = 09 
d2#O1 (U,* - c )-+ (U, -col)- -- 

O0 d p  dls” 

cut -coo) 2 - % O F -  - d52 910 = 0 7  

d2911 + (U* d2910 d29O1 
00 q - 2  1 -~01)---~10- dCZ dC2 

d2+,, dW,* d2U: 

(U,*-C )- 

- c l l d 5 ” - d g a 9 U - ~ 9 1 0  = 0. 
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(5.25 a)  

(5.25b) 

(5.25 c )  

(5.25d) 

By again expanding about 6 = 0, the normal stress condition can be written as 

at  6 = 0, where We is the Weber number, or 

7 2ia  cl$ 
-+if+--+a2We7 = 0. F2 Re dC 

(5.26) 

(5 .27)  

From the x* momentum equation, we find if to be 

After substituting for if and expanding in terms of E-l and a, we have from (5.27) 

d39,,ldC3 = 0, ( 5 . 2 7 ~ )  

d3901/dC3 = - 2doo, (5 .273)  

The term a2 We is included, as in the inclined-plane analysis, on the basis that the 
Weber number can be quite large for common fluids and some flow conditions. 

The solution 9 0 0  = (1 - C)2 (5 .29)  

satisfies (5.17a), (5.21), and (5 .22a) ,  and coo is then determined from (5 .25a)  as 

coo = 3 COB p. (5.30) 

From (5.17b), (5.21) and (5 .24a) ,  we also find 

Boo = 2(1-[)tanP. (5.31) 



250 

The case P -+ Qn will be discussed briefly below. At O(E-l), the solution 
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q501 = i tan /3{ - 6 + fC2 - 2C3 + QC4] (5.32) 

satisfies ( 5 . 1 8 ~ )  (5.21) and (5.27b); it  also satisfies (5.25b) if 
col = - 4 sin p. (5.33) 

(In writing (5.32) we have deleted any multiple of the homogeneous solution.) 
Hence, the wave speed is unaffected for waves which travel in the z direction. 
Oblique waves, however, can actually have a greater wave speed to this order for 
sufficiently small negative P. To complete the solution, we have 

/j o1 - - 10 + tan2p- (2 + tan”) 6- 2c2+ QC3, (5.34) 

a solution which satisfies (5.18b)) (5.21) and (5.24b). 

plane flow. The solution 
The O(a) problem is identical to that for an oblique disturbance in the inclined- 

= J,, 6+ K,, c2 + L,, c3 - &+ Re cos 0g5, (5.35) 

where L,, = i Re [ gcosp-- 9cosp ’ (a2we+$)], (5.35 a) 

K,, = - 2 c , , / 3 c o s ~ ,  J1, = &iRecosp-K1,-LI.,, ( 5 . 3 5 6 , ~ )  

satisfies (5.19~)) ( 5 . 2 5 ~ )  and ( 5 . 2 7 ~ )  andthe first part of (5.21). It also satisfies the 
second part of (5.21) if 

cl0 = iRe[~cos2p--Q(az We+I/F2)]. (5.36) 

As one might expect, this result states that the growth rate is a maximum for 
waves which travel in the direction of the lowest order mean flow (p = 0) .  Hence, 
for fixed flow conditions the waves on the disk should appear to be almost 
concentric at the larger values of the radius. The solution at the next order will 
indicat,e how this conclusion might be modified for finite Ekman numbers. To 
complete the solution at this order, we find 

4c1, tan p 
3 cos /3 O,, = i i  Resinp+ (6 - 1) - # i Re sin /3 (62- 9 5 4 ) )  (5.37) 

which satisfies (5.19b), (5.21) and (5 .24~) .  
Finally, at  O(aE-1)) we obtain 

(5 .38b)  
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This solution satisfies (5.20a) (5.25d) and (5,27d), and the first part of (5.21); it 
satisfies the second part of (5.21) if 

cI1 = g(iResin2P) [LT-L-lZ+_L-22-15] 
18 2 0  8 0  140 1 0  4 

= - 2.57 1 i Re sin 2p. (5.39) 

Hence, to the order considered, we have 

c = 3cosp- 4E-1sin/3+iaRe[zcos2/3- &(agWe+ l/P)- 2-57IE-lsin2,8]. (5.40) 

Although the growth rate is always less for /3 > 0 than for /3 = 0, the converse 
can hold for p < 0. In  fact, the terms in brackets which are dependent upon p 
have a maximum for 

tan 2p = - 4.28E-1. (5.41) 

For the values E-l= 0.05,O-1 and 0.5, corresponding values of /? for maximum 
ci are - B", - 11.6" and - 32.5", respectively. Negative values of p would corre- 
spond to spirals which open in the direction of rotation, as observed, and the 
given values of /3 are in reasonable agreement (cf. figure 9) with the observed 
values (if the spatial growth rate were maximized, the sign of /? would remain 
unchanged, but tan p would no longer be only a function of E but a complicated 
function of E, a, We and 3 2 ) .  On the other hand, the wave speed is increased 
somewhat relative to the case p = 0, which is not in agreement with the observed 
spiral waves. 

Some of the results given, e.g. Oo0 in (5.31), appear to become singular as p -+ 47r. 
This occurs because our expansion is restricted to cases when U*( 0) - c is of order 
unity, as can be seen from the kinematic condition for the surface deflexion (5.22 b) .  
For ,8 -+ in, this term is O(E-1) or O(a Re), depending upon the magnitude of 
a Re E. When a Re E < 1,  so that c N O(E-l), we must rescale the expansion so 
that q5 - O(23-l) in order to have q N O(l) ,  while 0 remains of order unity, as can 
be seen from the shear stress condition (5.24). When (a Re E )  > 1, so that c - O(a), 
then q5 - O(a)  and 0 - O( 1). In either case, the fact that the eigenvalue relation 
is not singular indicates that the result for c is valid for arbitrary p, which can 
easily be shown to be true for the latter case. For the former case, from (5.40), the 
analysis should be valid provided that (4/3E) tan p < 1, a condition which is met 
by much of the experimental data. 

The Coriolis force is manifested in two ways in the present problem, namely, 
in creating a mean flow component normal to the direction of the body force, 
whose effect can be felt via the convective terms and the boundary conditions, 
and in directly affecting the disturbance via the (o x G )  terms in the linearized 
stability equations. In  order to assess the importance of the latter effect, terms 
representing it were dropped from the analysis, so that the problem reduced to 
that of the stability of a flow with two spatially varying velocity components 
in a non-rotating system. The result for c was found to be 

c = 3 cos p -? E-1 sin /3 + ia Re [z cos2/3-+(a2 We+ l /Fg) - 4.94 E-l sin 2/31. 
(5.42) 

By comparing this result with (5.40), we see that the direct effect of the 
Coriolis force upon the disturbance is to decrease the angle of maximum 
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growth for a given value of E. It can also be shown that the maximum growth 
rate is decreased. 

Assuming the asymptotic mean flow solution to be valid, it is difficult to see 
what mechanism might give rise to the stationary pattern. The inflexion-point 
type of instability, which has been discussed by Gregory, Stuart & Walker 
(1955) and is appropriate for boundary-layer instability in rotating flows at 
large values of the Reynolds numbers, would occur only for positive values of p, 
and /3 large so that tmp N E.  One mechanism of instability which has been 
omitted on the basis of the parallel-flow model is the effect of centripetal accelera- 
tion upon the curved free surface. Here, we have in mind the type of instability 
discussed by Yih (1960) for a film on the surface of a rotating cylinder. However, 
this effect would be felt by the departure of the pressure distribution from the 
hydrostatic variation and, from the asymptotic solution, would lead to a modifica- 
tion of the Froude number term in the normal stress condition (5.26) by a term 
of O(Sw2/g), which would appear to be small. Hence, we can only conclude that 
the characteristics of the spiral wave are somehow fixed in a region in which the 
asymptotic solution is completely invalid. A more refined stability analysis, using 
the rotating-disk geometry, would need to consider the relative magnitudes of 
E-2 and (EE0)-l. Terms of the former type emphasize the departure of the mean 
flow parallel to the disk from the radial direction and the effect of the Coriolis 
force upon the disturbance (which is very important in the Ekman layer sta- 
bility problem; cf. Lilly (1966)). Terms of the latter type reflect the effects of the 
mean vertical velocity and surface curvature (which would bring in new terms 
involving the surface tension) and, as shown by Rauscher (1969), the error in- 
volved in assuming a local stability analysis to be valid. The effects of the air 
upon both the mean and perturbed motions should also be assessed more care- 
fully. For instance, Craik (1966) has shown that the tangential stress perturba- 
tion at the interface can play an important role in the study of wind-generated 
waves in very thin liquid films. 

6. Film breakup 
The breakup of the film is illustrated in figure 15 (plate 3). It shows a series of 

frames taken during an uninterrupted test during which the flow rate was varied 
continuously at constant rotational speed. Typically, as the film thins out one 
begins t o  see ‘incipient’ dry spots (figure 15 (a) ) .  These appear to be disturbances 
on the film surface caused by dust particles which have settled on the disk. 
Finally, the film breaks usually, but not necessarily, immediately downstream 
of these protruberances and the number of these dry spots increases. (Ultimately, 
the film breaks up entirely and flows in ‘rivulets’.) The film breakup exhibits a 
pronounced ‘hysteresis.’ Dry spots can be destroyed by wiping the disk; they 
will reappear spontaneously when the film is sufficiently thin. 

When the film is relatively thick the dry spots are fairly irregular and have a 
blunt leading edge (cf. ‘dry patches’ on plane films flowing under gravity). 
When the film is thin and the rotational speed is high, they exhibit sharp leading 
edges and a very regular triangular shape. The fluid ‘accumulates’ along the 
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FIGURE 16. Conditions for the occurrence of dry spots. 0,  Q = I.Oc.o./s; 0, Q = 1.670.c./s; 
A, Q = 2.5 c.c./s; 0, Q = 3.33 c.o./s; v* = u* = 1; 8-= is the film thickness at which dry 
spots f ist  appear. 

edges of the triangle; it appears that the film thickness between spots is not affec- 
ted (see also the oscilloscope trace, figure 6). The wave motion does not seem to 
influence the breakdown of the a m ;  waves appear at the same flow condition 
whether dry spots are present or not. 

It is quite difficult to correlate these observations in a quantitative way be- 
cause they depend so much on the cleanliness of the disk (wetting properties) 
and exhibit such a pronounced hysteresis. The following is intended to be a prac- 
tical guide for the experimenter rather than a scientific study of the phenomenon. 
The observations we shall discuss are based on tests in which flow conditions 
were fixed, dry spots were ‘wiped off’ and then observed as they reappeared 
spontaneously in a period of the order of ten seconds. 

It seems that two distinct mechanisms are operative; these are evident on 
figure 16. When the film becomes sufficiently thin (below 20pm) the breakdown 
is caused by particles (incipient dry spots), probably dust, which are entrained 
by the fluid and stick to the surface of the disk. The appearance of dry spots is 
then dependent only on the film thickness and is thus independent of surface 
tension. Dry spots are distributed randomly around the circumference of the disk 
and their number increases with radius. The value of the film thickness shown on 
figure 16 (amm) corresponds to the place on the disk where these dry spots first 
appear. When the film is thicker breakdown occurs ‘naturally’, that is, without 
visible disturbance, as a function of the flow parameters, specifically, the Weber 
number. Figure 16 shows this for a typical experiment. The intercept on this 
logarithmic plot of the film thickness at  which dry spots appear against the 
local Weber number is roughly proportional to Q2. The figure also indicates a 
limit below which, in this particular experimental situation (wetting properties), 
which is fairly typical of laboratory practice, one can always expect dry spots to 
occur. 
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7. Concluding remarks 
The results of the present experiment defme fairly completely the flow of a 

thin liquid film on a rotating disk and the condition of the free surface. The 
use of surface-active agents to vary the apparent surface tension deserves further 
theoretical and experimental attention, particularly in view of the strong in- 
fluence of this parameter on the stability of the film. In  practical terms, the results 
allow one to selecb design parameters such that the film surface will be smooth 
or wavy. One can expect that the interphase heat- or mass-transfer coefficients 
will vary considerably between these two conditions, which is an important 
consideration in most applications of thin-film flows. 
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FIGURE 6 .  Oscilloscop trams of ivavc patterns, T = 5 em. ( a )  Concentric wave, Q = 
11.6 c.c./s, o’ = 1 rev/s. ( b )  Sprrnl wave, Q = 3.34 c.c./s, w’ = 6 rev/s. (c) Dry spot, Q = 
2.5 c.c./s, w’ = 3 rcv/s. 
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FIGURE 15. Examples of dry spots a t  high rotational speeds. Q = 100 c.c./min, v' = 1.7, 
a* = 0-98. Direction of rotation is clockwise. (a) o' = 4 rev/s, ( h )  o' = 6 rev/s, ( c )  
of = 9 rev/s. 
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